假期早已结束,初三的同学们也已经开始了最后的冲刺,这段时间对同学们和家长们来说注定紧张忙碌!以下是丹东市中考分数设置情况,以及教育局正式公布的丹东市中考考试说明!
丹东中考分数设置
总分:
具体分数设置如下:
数学、语文、外语、物理、化学80、主科合计。
体育60分,其他科目占(*治、历史、地理、生物、)。
其中生物、地理初二结业考试,算中考成绩。。
丹东市年中考语文考试说明
根据教育部制定的《义务教育语文课程标准(年版)》(以下简称《新课标》),结合我市初中语文教学实际制定本考试说明。
一、命题原则
1、考虑不同层次、不同发展状态学生的实际情况,客观、公正地衡量学生的语文学业水平。
2、以全面考查学生的语文素养为宗旨,处理好课程目标中知识和能力、过程和方法、情感态度和价值观的交融、整合,体现语文课程目标的整体性和综合性。
3、语文试题要体现语文学科工具性和人文性的统一,符合学生生活和社会发展的实际情况,与学生的已有经验和身心发展水平相适应。
4、命题选择文质兼美的作品作为阅读测试材料,注意材料思想内容的价值导向和语言表达的规范性,适当控制难度及篇幅,处理好教材直接涉及的教学内容与课外语言材料的关系。
5、作文命题力求富有新意,努力设计符合学生认识水平和生活实际的试题,有利于学生表达对自然、社会和人生的感受和理解,鼓励学生有创意地表达。
6、命题依据《义务教育语文课程标准(版)》进行。
7、正确发挥考试的导向作用,考试命题要选择恰当的测试方式,合理确定试卷结构,灵活地设置题目,有利于引导教师改进教学,引导学生学会学习。杜绝偏题、怪题、错题,要有助于减轻学生课业负担,推进素质教育。
二、考试范围
根据《新课标》,考查《新课标》“课程目标”中第四学段规定的内容。其中文言诗文的背诵默写考查《新课标》“附录”中推荐的7-9年级的背诵篇目(有删减,具体内容见附一)。文言文阅读考查的阅读材料一部分来自教材上的课文,范围是《新课标》“附录”部分推荐的7-9年级的背诵篇目中的古文部分(有删减,具体内容见附二);另一部分文言文阅读考查的阅读材料来自课外散文。考查现代文阅读的阅读材料一律来自课外。
三、考试内容及要求
(一)、积累与运用
1.识字、写字。
学生应能够正确识记、使用《新课标》要求掌握的个常用字(侧重人教版语文教材课后“读一读写一写”中的生字)。能准确拼写、读准字音,认清字形、掌握汉字基本意义,能在具体语言环境中正确运用汉字;能正确、规范、工整地书写汉字。
2.语言运用能力。
结合具体的语境考查语言的运用情况。如能在具体的语言环境中正确运用词语,能够辨识、修改病句,会对对联,会仿写,能正确使用标点,能连贯、得体地表达等。
3.对传统文化的积累。
考查学生对中国传统文化的了解情况,包括人教版语文教材中涉及到的天文历法、特殊称谓、民俗礼仪等方面的基本常识。
4.文学常识及名著阅读的积累与运用。
文学常识主要考查主要考查学生对《新课标》“附录”部分推荐的7-9年级的背诵篇目中的古诗文部分(有删减,具体内容见附录一、二)作家作品常识和相关文体知识的掌握情况;名著阅读主要考查学生对《新课标》及人教版语文教材推荐的名著的阅读情况(有删减,具体内容见附三),命题主要参考教材附录部分内容。要求学生整体领悟作品的内涵和思想感情倾向,了解相关的文学常识以及作品中重要的人物形象和故事情节。
5.情境交际。
能根据对象和场合,文明得体地交流;能根据对方在具体情境中的话语,理解对方的观点和意图;能具体生动地讲述见闻,复述转述;能听出讨论的焦点,有针对性地发表意见。
6.古今优秀诗文的积累。
依据《新课标》及人教版语文教材的要求,主要考查学生识记古今优秀诗文的能力。
(二)、阅读
1、文言文阅读:
(1)能正确地理解文言词语的含义,包括文言实词和常见的文言虚词。
(2)能正确地将文言语句译成现代汉语。
(3)能理解并归纳文章的主要内容。
(4)能把握作者在文章中表达的思想感情,提高自己的欣赏品位。
(5)课内外的文言文选材不要求比较阅读。
2、现代文阅读:
(1)能根据文章的不同体裁特点进行阅读,了解记叙、描写、说明、议论、抒情等表达方式。有较快的阅读速度。
(2)能整体感知现代文的内容,把握文章的内容要点,体会作者的态度、观点和感情。
(3)能把握现代文结构,理清现代文思路;对现代文内容和表达能有自己的心得,能提出自己的看法和疑问。
(4)能体味和推敲重要词句在语言环境中的意义和作用。
(5)了解比喻、拟人、夸张、排比、对偶、反复、反问、设问八种修辞方法,体会它们在文中的表达效果。
(6)欣赏文学作品,能有自己的情感体验,初步领悟作品的内涵,并从中获得有益的启示。对作品的思想感情倾向,能联系文化背景作出自己的评价;对作品中感人的情境和形象,能说出自己的体验;能品味作品中富于表现力的语言。
(7)阅读说明类文章,能获取主要信息;阅读科技作品能领会作品中所体现的科学精神和科学思想方法,能用相关学科的知识来解答阅读中的一些问题。
(8)阅读议论文,能区分观点与材料,发现观点与材料之间的联系,并通过自己的思考作出判断。
(三)、写作
1、能运用多种表达方式进行书面表达。
2、能根据写作需要确定表达的内容,做到感情真挚、思想健康,能表达出自己的独特感受和真切体验,做到内容具体、语言通顺得体。
3、能根据表达的内容选择恰当的表达方式。能合理安排内容的先后和详略,条理清楚地表达自己的意图。能运用联想和想象来丰富表达内容,力求有创意地表达。
4、不写错别字,正确使用标点符号,书写规范、整洁。
四、考试形式及试卷结构
(一)、考试形式及时间
语文学科采用闭卷考试、书面作答的形式,考试时间分钟。
(二)、试卷结构及内容
试卷满分为分,共分四部分。
第一部分为选择题,包括基础知识的积累与运用,满分20分。
第二部分为填空题,包括文言诗文的积累与运用,满分12分。
第三部分为阅读题,包括文言文阅读和现代文阅读,满分58分.其中文言文阅读10分(课内课外约各占一半),现代文阅读48分,主要题型为填空题和简答题。
第四部分为写作题,满分60分,作文的命题方式包括命题作文、半命题作文、材料作文、话题作文,写作部分命题采用二选一的形式。
试题易、中、难比例为7:2:1。
附一古诗词背诵篇目
1关雎
2蒹葭
3观沧海(东临碣石)
4饮酒(结庐在人境)
5木兰诗(唧唧复唧唧)
6送杜少府之任蜀州(城阙辅三秦)
7次北固山下(客路青山外)
8使至塞上(单车欲问边)
9闻王昌龄左迁龙标遥有此寄(杨花落尽子规啼)
10行路难(金樽清酒斗十千)
11*鹤楼(昔人已乘*鹤去)
12望岳(岱宗夫如何)
13春望(国破山河在)
14茅屋为秋风所破歌(八月秋高风怒号)
15白雪歌送武判官归京(北风卷地白草折)
16酬乐天扬州初逢席上见赠(巴山楚水凄凉地)
17钱塘湖春行(孤山寺北贾亭西)
18雁门太守行(黑云压城城欲摧)
19赤壁(折戟沉沙铁未销)
20泊秦淮(烟笼寒水月笼沙)
21夜雨寄北(君问归期未有期)
22无题(相见时难别亦难)
23相见欢(无言独上西楼)
24渔家傲(塞下秋来风景异)
25浣溪沙(一曲新词酒一杯)
26登飞来峰(飞来山上千寻塔)
27江城子(老夫聊发少年狂)
28水调歌头(明月几时有)
29武陵春(风住尘香花已尽)
30破阵子(醉里挑灯看剑)
31过零丁洋(辛苦遭逢起一经)
32天净沙秋思(枯藤老树昏鸦)
33山坡羊潼关怀古(峰峦如聚)
34己亥杂诗(浩荡离愁白日斜)
附二古文背诵题目
1《论语》七则(学而时习之;吾日三省吾身;温故而知新;学而不思则罔;知之者不如好之者;三人行;子在川上曰)
2曹刿论战
3鱼我所欲也
4生于忧患,死于安乐
5虽有佳肴
6邹忌讽齐王纳谏
7出师表
8桃花源记
9答谢中书书
10三峡
11陋室铭
12小石潭记
13岳阳楼记
14醉翁亭记
15爱莲说
16记承天寺夜游
17送东阳马生序
18湖心亭看雪
19河中石兽
附三课外读物
1朝花夕拾
2繁星春水
3西游记
4水浒
5骆驼祥子
6格列佛游记
7童年
8钢铁是怎样炼成的
9海底两万里
10简?爱
丹东市中考数学考试说明
根据教育部《全日制义务教育数学课程标准(版)》(以下简称《数学课程标准》的要求,结合我市初中数学学科教学的实际情况,制定本考试说明。(我市数学学科使用教材版本为《北师版》)。
一、命题原则
1.命题以《数学课程标准》规定的内容和程度要求为依据。
2、命题有利于改进学生的学习和教师的教学,从而达到有效地促进学生和教师的发展的目的,同时有利于课程改革的有效实施和深入发展。
3、命题注重对学生学习数学知识与技能的结果和过程的考查,注重对第三学段内容所反映出来的数学思想和数学方法的考查,注重对学生的数学思考能力和解决数学问题能力的考查,加强试题与社会实际和学生生活实际的联系。
4、命题面向全体学生,科学地评价学生通过课改阶段的数学学习所获得的知识和能力。
二、考试范围
考查内容以《数学课程标准》中的“内容标准”为依据,包括第三学段的全部内容。其中“课题学习”不作为独立命题内容。
三、考试内容及要求
数与代数
试题将考查学生学习实数、整式和分式、方程和方程组、不等式和不等式组、函数等知识,探索数、形及实际问题中蕴涵的关系和规律,初步掌握一些有效地表示、处理和交流数量关系以及变化规律的工具,发展符号感,体会数学与现实生活的紧密联系,增强应用意识,提高运用代数知识与方法解决问题的能力.
试题应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程,应加强考查方程、不等式、函数等内容的联系,应避免繁琐的运算.
具体要求:
(一)数与式
1.有理数
(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.
(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道的含义(这里a表示有理数).
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)
(4)理解有理数的运算律,能运用运算律简化运算.
(5)能运用有理数的运算解决简单的问题.
2.实数
(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算数平方根、立方根
(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值
(4)能用有理数估计一个无理数的大致范围.
(5)了解近似数,在解决实际问题中,并会按问题的要求对结果取近似值.
(6)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.
3.代数式
(1)借助现实情境了解代数式,进一步理解用字母表示数的意义.
(2)能分析简单问题中的简单数量关系,并用代数式表示.
(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.
4.整式与分式
(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数。
(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中的多项式相乘仅指一次式之间以及一次式与二次式相乘).
(3)能推导乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,了解公式的几何背景,并能利用公式进行简单计算.
(4)能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数).
(5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分,能进行简单的分式加、减、乘、除运算.
(二)方程与不等式
1.方程与方程组
(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.
(2)经历估计方程解的过程.
(3)掌握等式的基本性质
(4)能解一元一次方程、可化为一元一次方程的分式方程(方程中的分式不超过两个).
(5)掌握代入消元法和加减消元法,能解二元一次方程组.
(6)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程.
(7)会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.
(8).能根据具体问题的实际意义,检验方程的解是否合理.
2.不等式与不等式组
(1).结合具体问题,了解不等式的意义,探索不等式的基本性质.
(2).能解数字系数的一元一次不等式,并能在数轴上表示出解集。会用数轴确定由两个一元一次不等式组成的不等式组的解集.
(3).能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.
(三)函数
1.函数
(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义.
(2)结合实例,了解函数的概念和三种表示方法,能举出函数的实例.
(3)能结合图象对简单实际问题中的函数关系进行分析.
(4)能确定简单实际问题中函数的自变量取值范围,并会求出函数值.
(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系.
(6)结合对函数关系的分析,能对变量的变化情况进行初步讨论.
2.一次函数
(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.
(2)会利用待定系数法确定一次函数的表达式
(3)能画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解k>0和k<0时,图象的变化情况.
(4)理解正比例函数.
(5)体会一次函数与二元一次方程的关系.
(6)能用一次函数解决简单实际问题.
3.反比例函数
(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
(2)能画出反比例函数的图象,根据图象和表达式探索并理解时,图象的变化情况.
(3)能用反比例函数解决简单实际问题.
4.二次函数
(1)通过对实际问题的分析,体会二次函数的意义.
(2)会用描点法画出二次函数的图象,通过图象了解二次函数的性质.
(3)会用配方法将数字系数的二次函数的表达式化为的形式,并能由此得到二次函数的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单的实际问题.
(4)会利用二次函数的图象求一元二次方程的近似解.
图形与几何
应考查学生探索基本图形(直线形、圆)的基本性质及其相互关系、对空间图形的认识和感受,平移、旋转、对称的基本性质,考查变换在现实生活中的广泛应用,考查运用坐标系确定物体位置的方法,考查空间观念.
推理与论证的考查应从以下几个方面展开:在探索图形性质活动过程中,发展合情推理,有条理地思考与表达;在积累了一定的活动经验与掌握了一定的图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,发展证明的必要性,理解证明的基本过程,掌握用综合法证明的格式.
考试中应注重学生所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想象等探索过程;应注重对证明本身的理解,而不追求证明的数量和技巧.证明的要求控制在《数学课程标准》所规定的范围内.
具体要求
(一).点、线、面、角
1.通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等。
2.会比较线段的长短,理解线段的和、差,以及线段中点的意义
3.掌握基本事实:两点确定一条直线
4.掌握基本事实:两点之间线段最短
5.理解两点间距离的意义,能度量两点间的距离
6.理解角的概念,能比较角的大小
7.认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差
(二).相交线与平行线
1.理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等、同角(等角)的补角相等的性质。
2.理解垂线、垂线段等概念,能用三角尺或量角器过一点已知直线的垂线。
3.理解点到直线距离的意义,能度量点到直线的距离
4.掌握基本事实:过一点有且只有一条直线垂与已知直线垂直
5.识别同位角、内错角、同旁内角
6.理解平行线的概念,掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
7.掌握基本事实:过直线外一点有且只有一条直线与这条直线平行
8.掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。
9.能用三角尺和直尺过已知直线外一点画这条直线的平行线。
10.探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么这两条直线平行;探索并证明平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。
11.了解平行于同一条直线的两条直线平行。
(三).三角形
1、理解三角形及其内角、外角、中线、高线、角平分线等概念,了解三角形的稳定性。
2、探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。
3、理解全等三角形的概念,能识别全等三角形中的对应边、对应角。
4、掌握基本事实:两边及其夹角分别相等的两个三角形全等
5、掌握基本事实:两角及其夹边分别相等的两个三角形全等
6、掌握基本事实:三边分别相等的两个三角形全等
7、证明定理:两角分别相等且其中一组等角的对边也相等的两个三角形全等
8、探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。
9、理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端的距离相等的点在线段垂直平分线上。
10、了解等腰三角形的有关概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。
11、了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握有两个角互余的三角形是直角三角形。
12、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
13、探索并掌握判定直角三角形全等的“斜边、直角边”定理
14、了解三角形重心的概念。
(四).四边形
1.了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。
2.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。
3.探索并掌握平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
4.了解两条平行线之间距离的意义,能度量两条平行线之间的距离。
5.探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形具有矩形和菱形一切性质。
6.探索并证明三角形的中位线定理
(五).圆
1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念,探索并了解点与圆的位置关系。
2.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。
3.知道三角形的内心和外心
4.了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线。
5.会计算圆的弧长、扇形的面积。
6.了解正多边形的概念及正多边形与圆的关系。
(六).尺规作图
1.能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线。
2.会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高作等腰三角形;已知一直角边和斜边作直角三角形。
3.会利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。
4.在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法.
(七).定义、命题、定理
1.通过具体的实例,了解定义、命题、定理、推论的含义。
2.结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.
3.知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。
4.了解反例的作用,知道利用反例可以判断一个命题是错误的.
5.通过实例体会反证法的含义。
(八).图形的轴对称
1.通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
2.能画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形。
3.了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质.
(九).图形的旋转
1、通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
2、了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
3、探索线段、平行四边形、正多边形、圆的中心对称性质。
(十)图形的平移
1、通过具体实例认识平移,探索它的基本性质,一个图形和它经过平移所得的图形中,两组对应点连线平行(或在同一条直线上)且相等。
2、运用图形的轴对称、旋转、平移进行图案设计。
(十一).图形的相似
1、了解比例的基本性质,线段的比、成比例的线段,通过建筑、艺术上的实例了解*金分割。
2、通过具体实例认识图形的相似,了解相似多边形和相似比
3、掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。
4、了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。※了解相似三角形判定定理的证明。
5、了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积的比等于相似比的平方。
6、了解图形的位似,知道利用位似可以将一个图形放大或缩小。
7、会利用图形的相似解决一些简单的实际问题。
8、利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值。
9、会由已知三角函数值求它对应的锐角。
10、能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
(十二).图形的投影
1.通过丰富的实例,了解中心投影和平行投影的概念。
2.会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。
3.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型。
4.通过实例,了解上述视图与展开图在现实生活中的应用。
(十三).坐标与图形位置
1.结合实例进一步体会用有序数对可以表示物体的位置。
2.理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
3.在实际问题中,能建立适当的直角坐标系,描述物体的位置。
4.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会可以用坐标刻画一个简单图形。
5.在平面上,能用方位角和距离刻画两个物体的相对位置。
(十四).坐标与图形运动
1.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。
2.在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。
3.在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。
4.在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一条边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。
统计与概率
将考查学生体会抽样的必要性以及用样本估计总体的思想,描述数据的方法,概率的意义,能计算简单事件发生的概率.
应注重考查学生所学内容与日常生活、自然、社会和科学技术领域的联系,使学生体会统计与概率对制定决策的重要作用;应注重使学生从事数据处理的全过程,根据统计结果作出合理的判断;应注重使学生在具体情境中体会概率的意义;应加强考查统计与概率之间的联系;应避免将这部分内容的学习变成数字运算的练习,对有关术语不要求进行严格表述.
具体要求
(一)抽样与数据分析
1.经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据.
2.体会抽样的必要性,通过实例了解简单随机抽样。
3.会制作扇形统计图,能用统计图直观、有效地描述数据。
4.理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。
5.体会刻画数据离散程度的意义,会计算简单数据的方差。
6.通过实例,了解频数和频数分布的意义,能画频数分布直方图,能利用频数分布直方图解释数据中蕴含的信息。
7.体会样本与总体的关系,知道可以通过样本平均数、样本方差推断总体平均数和总体方差。
8.能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。
9.通过表格、折线图、趋势图等,感受随机现象的变化趋势。
(二)事件的概率
1.能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2.知道通过大量的重复试验,可以用频率来估计概率。
四、试卷结构、题型及分数分配
1.试题分选择题、填空题和解答题三种类型,共26题。选择题8道,为四选一的单项选择题,每道题3分,共24分;填空题8道,只要求直接写出结果,不必写出计算过程或推理过程,每道题3分,共24分;解答题10道,包括计算题、作图题、证明题、实际应用问题、阅读理解问题、开放性及探索性问题等,共分。解答题中除了以填空形式出现的问题只需直接填出答案外,其余的解答题需按要求写出解答过程。
2.试卷满分分,考试时间分钟。
3.“数与代数”、“图形与几何”、“统计与概率”三大领域的分值比例约为4∶4∶2。
4.试题易、中、难比例约为7∶2∶1。
注:考生不允许带计算器进入考场
丹东市年中考英语考试说明
一、考试范围
丹东市年中考英语学科的命题将以《英语课程标准》所规定的九年级结束时应达到的五级目标为依据,包括五级目标对语言技能、语言知识、情感态度、学习策略和文化意识所提出的具体的内容标准及目标要求。词汇以《英语课程标准》附录3中的词汇表为依据。
二、考试内容
●词汇知识
了解英语词汇包括单词、短语、习惯用语和固定搭配等形式。词汇依据年版《英语课程标准》附录3中的词汇表(包括二级和五级)。要求能够运用这些词汇描述事物、行为和特征,说明概念等,同时要求掌握构词法知识。
●语法知识
1.名词
(1)掌握可数名词及其单复数形式的构成和用法。
(2)掌握不可数名词及其数量的表达方式。
(3)掌握名词所有格的使用。
(4)掌握专有名词的概念及一般用法。
2.代词
(1)掌握人称代词主格、宾格形式及用法。
(2)掌握形容词性物主代词和名词性物主代词的用法。
(3)掌握反身代词的含义及用法。
(4)掌握指示代词和疑问代词的基本用法。
(5)掌握不定代词用法。
3.数词
掌握基数词和序数词的构成及用法。
4.介词和介词短语
理解介词的意义,掌握常见介词及介词短语的基本用法。
5.连词
理解连词的意义,掌握并列连词与从属连词的基本用法。
6.形容词与副词(比较级和最高级)
(1)掌握形容词与副词在句子中的功能。
(2)掌握形容词、副词比较级和最高级的构成及其不规则变化,熟练运用所学句型表示两者和三者或三者以上人或事物的比较。初步掌握用much,alittle等副词修饰比较等级的用法。
7.冠词
掌握定冠词、不定冠词的基本使用规则和常见习惯用法。
8.动词
(1)掌握系动词be,be